The modular variety of hyperelliptic curves of genus three
نویسندگان
چکیده
The modular variety of non singular and complete hyperelliptic curves with level-two structure of genus 3 is a 5-dimensional quasi projective variety which admits several standard compactifications. The first one comes from the period map, which realizes this variety as a sub-variety of the Siegel modular variety of level two and genus three H3/Γ3[2]. We denote the hyperelliptic locus by I3[2] and its closure in the Satake compactification by I3[2] ⊂ H3/Γ3[2].
منابع مشابه
Non-hyperelliptic modular Jacobians of dimension 3
We present a method to solve in an efficient way the problem of constructing the curves given by Torelli’s theorem in dimension 3 over the complex numbers: For an absolutely simple principally polarized abelian threefold A over C given by its period matrix Ω, compute a model of the curve of genus three (unique up to isomorphism) whose Jacobian, equipped with its canonical polarization, is isomo...
متن کاملFiniteness Results for Modular Curves of Genus at Least 2
A curve X over Q is modular if it is dominated by X1(N) for some N ; if in addition the image of its jacobian in J1(N) is contained in the new subvariety of J1(N), then X is called a new modular curve. We prove that for each g ≥ 2, the set of new modular curves over Q of genus g is finite and computable. For the computability result, we prove an algorithmic version of the de Franchis-Severi The...
متن کاملFiniteness Results for Modular Curves of Genus at Least
A curve X over Q is modular if it is dominated by X1(N) for some N; if in addition the image of its jacobian in J1(N) is contained in the new subvariety of J1(N), then X is called a new modular curve. We prove that for each g ≥ 2, the set of new modular curves over Q of genus g is finite and computable. For the computability result, we prove an algorithmic version of the de Franchis-Severi Theo...
متن کاملThe congruence subgroup property for the hyperelliptic modular group
Let Mg,n and Hg,n, for 2g − 2 + n > 0, be, respectively, the moduli stack of n-pointed, genus g smooth curves and its closed substack consisting of hyperelliptic curves. Their topological fundamental groups can be identified, respectively, with Γg,n and Hg,n, the so called Teichmüller modular group and hyperelliptic modular group. A choice of base point on Hg,n defines a monomorphism Hg,n →֒ Γg,...
متن کاملElliptic factors in Jacobians of hyperelliptic curves with certain automorphism groups
We decompose the Jacobian variety of hyperelliptic curves up to genus 20, defined over an algebraically closed field of characteristic zero, with reduced automorphism group A4, S4, or A5. Among these curves is a genus 4 curve with Jacobian variety isogenous to E2 1 × E2 2 and a genus 5 curve with Jacobian variety isogenous to E5, for E and Ei elliptic curves. These types of results have some in...
متن کامل